An analysis of the long-term effects of performance-enhancing drugs

Original source

The debate over the long-term effects of doping is a fierce one full of emotion. Photo: Tim De Waele |

Our celebrities have meltdowns, chop off their hair, interrupt awards shows, and get pulled over driving drunk. And, for punishment, they get to tour the talk-show circuit, sign new contracts, and revitalize their careers. Politicians sleep with interns, misappropriate funds, email pictures of their less-public sides, and, sometimes, still win elections. Even when our athletes cheat on their wives repeatedly, their “brands” are often salvaged by means of a simple “image readjustment.”

In cycling, however, forgiveness is a foreign concept.

A first offense for doping — what would amount to sitting on the bench for a few NFL games — often brings a two-year ban in cycling. It can end a career. And for those who do return, they are sometimes faced with cold shoulders and limited contract opportunities. Lately, even our heroes are rewarded for their grand tour victories with cries of “not normal” and demands for power files and blood profiles.

It doesn’t quite seem fair. If Toyota can build cars with life-endangering flaws, then apologize, offer a factory recall, and be forgiven, how hard is it, really, to excuse a few pro cyclists?

Some claim that there is good reason not to forgive. While WADA bestows a two-year suspension, partially to ensure any gains from doping have cleared an athlete’s system, some believe that a temporary ban, no matter how long, isn’t long enough.

Years of cycling while doped, the thinking goes, allowed athletes to train abnormally hard, resulting in increased capillary and mitochondrial density and improved oxygen delivery, all of which are permanent benefits. Some believe these athletes would have an unfair advantage no matter when they returned.

“That is the most ridiculous thing,” said Christian Vande Velde (Garmin-Sharp) when asked if the effects of doping were permanent. Like his Garmin teammates Tom Danielson and Dave Zabriskie, Vande Velde served a six-month, off-season ban from the sport after admitting to doping while supporting the United States Anti-Doping Agency investigation into Lance Armstrong. “I didn’t dope that much. It was just a few times. It didn’t even help that much … but it’s crazy to think that there’s some long-term effect or benefit.”

Proponents of lifetime bans are quick to counter with the fact that many cyclists, such as Zabriskie, Vande Velde, and Levi Leipheimer, enjoyed their best results after they claimed to have stopped doping. “It shouldn’t add up that these riders, who improved with doping, would continue to perform at a much higher level after doping,” pointed out one Velo reader. (And, of course, this assumes that they all actually stopped doping when they said they did.)

Jonathan Vaughters, Garmin-Sharp team manager and an admitted former user of PEDs, attributes those performance increases to the sport cleaning itself up. These riders are only better relative to other, now-clean cyclists. Zabriskie also attributes it to a change in approach. Where athletes used to just focus on what to take and when, now it’s about adhering to legitimate training science. “Me and Christian… we never trained as hard as we train now,” Zabriskie said in August, at the USA Pro Challenge, before announcing his retirement. “It’s not the same. It wasn’t the same level. There weren’t guys like [physiologist] Allen Lim out there measuring lactate, figuring out inflammatory diets, with rice cakes and special electrolyte drinks,” he said.

This debate is heated and emotionally charged, with members of each side claiming strong science to back their beliefs. But the fact is, as Vaughters puts it, the science is imperfect. “We’re relying on studies from rats and cancer patients,” he said. Few are willing to admit that their evidence is mostly anecdotal.

We’ll attempt to strip out the emotions and hyperbole and see what the science does and does not say. Then you can decide how forgiving you want to be.

Doping vs. The body

Possibly the best argument for forgiving our flawed heroes rests in the fundamental driving force of our physiology itself — homeostasis, or state of equilibrium. Simply put, homeostasis means that our bodies strive to stay in balance.

At the forefront of this “lasting-effects debate” are two researchers in Europe, Dr. Cristóbal Belda-Iniesta and Dr. Jo Bruusgaard. Belda-Iniesta is the head of the Biomarkers and Experimental Therapeutics for Cancer Group at Madrid’s University Hospital. His research on cancer markers has led to novel ways to identify doping even years after the fact. He looks for changes in homeostasis; according to Belda-Iniesta our bodies are, naturally, very well balanced. Almost everything in our bodies has an equilibrium point — a set body temperature, fluid volume, hematocrit, blood sugar, and countless others.

Our bodies respond to anything that stresses these levels. The classic example is our set 98.6-degree Fahrenheit body temperature. When it gets hot, we’ll sweat, and when it gets cold, we’ll shiver, but our bodies attempt to stay at 98.6 degrees.

Homeostasis also explains our training adaptations. You may lift weights with the desire to get stronger and impress your friends, but that’s not what motivates your body. Lifting weights damages muscles, which is another homeostatic stress. Do enough damage and the body will say, “I don’t like this damage so I’m going to build the muscle back bigger and stronger. That way, the next time this stressor is thrown at me, I can homeostatically handle it.”

Detraining is just the reverse. Remove the constant stressor and your body will no longer feel a need to maintain such large muscle tissue. Soon enough, you’ll have to head back to the gym.

And how does homeostasis accomplish this amazing balance? Hormones. Sensors throughout our body detect any imbalance and tell the brain to release the appropriate hormones to make us sweat, feel thirsty, release glucose, or whatever may be needed to restore balance. Once the stressor is gone, the hormones break down.

Most doping products are just synthetic versions of our natural hormones. They use the body’s normal pathways, but they fool our bodies into responding to a bigger stress than what’s really there. They intentionally cause the body to get out of balance. But, as Belda-Iniesta pointed out, “Athletes don’t need to be balanced at the time of competition.”

“Our bodies try to balance even artificial changes in our bodies,” he said. So, once the athlete stops taking doping products, what’s left in the system will break down rapidly and the body will, over time, find its true levels again. The athlete will “detrain,” no differently than if he had simply reduced his training volume. When asked how long this would take, Belda-Iniesta replied, simply, “Months.”

All gains, honestly achieved or not, dissolve. Mitochondrial and capillary density, often cited as permanent benefits of doping, start decreasing within days. Slow-twitch muscle fibers convert back to fast twitch in short order, and improvements in VO2 max can be reversed in 12 weeks.

The post An analysis of the long-term effects of performance-enhancing drugs appeared first on